NLS-EM2037 Series
OEM Scan Engine
Integration Guide
Disclaimer

© 2013 Fujian Newland Auto-ID Tech. Co., Ltd. All rights reserved.

Please read through the manual carefully before using the product and operate it according to the manual. It is advised that you should keep this manual for future reference.

Do not disassemble the device or remove the seal label from the device, doing so will void the product warranty provided by Fujian Newland Auto-ID Tech. Co., Ltd.

All pictures in this manual are for reference only and actual product may differ. Regarding to the product modification and update, Fujian Newland Auto-ID Tech. Co., Ltd. reserves the right to make changes to any software or hardware to improve reliability, function, or design at any time without notice. The information contained herein is subject to change without prior notice.

The products depicted in this manual may include software copyrighted by Fujian Newland Auto-ID Tech. Co., Ltd or third party. The user, corporation or individual, shall not duplicate, in whole or in part, distribute, modify, decompile, disassemble, decode, reverse engineer, rent, transfer or sublicense such software without prior written consent from the copyright holders.

This manual is copyrighted. No part of this publication may be reproduced, distributed or used in any form without written permission from Newland.

Fujian Newland Auto-ID Tech. Co., Ltd. reserves the right to make final interpretation of the statement above.

Fujian Newland Auto-ID Tech. Co., Ltd.
3F, Building A, No.1, Rujiang West Rd., Mawei, Fuzhou, Fujian, China 350015
http://www.nlscan.com
Revision History

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
<th>Date</th>
</tr>
</thead>
<tbody>
<tr>
<td>V1.0.0</td>
<td>Initial release.</td>
<td>December 28, 2012</td>
</tr>
<tr>
<td>V1.0.1</td>
<td>Corrected inappropriate expressions and misspellings</td>
<td>January 17, 2013</td>
</tr>
</tbody>
</table>
Table of Contents

Chapter 1 Introduction .. 1
 About the EM2037 ... 1
 Documentation Set ... 1
 Aimer ... 1
 Illumination ... 1

Chapter 2 Installation .. 2
 General Requirements ... 2
 ESD Precautions .. 2
 Dust and Dirt .. 2
 Environment ... 2
 Thermal Consideration ... 2
 Installation Orientation ... 2
 Optics .. 2
 Window Placement .. 2
 Window Material and Color ... 3
 Abrasion-resistant and Coating ... 3
 Window Size .. 3
 Ambient Light .. 6
 Eye Safety .. 6
 Mounting ... 6
 Mechanical Mounting Dimensions for Two-in-one Type (Unit: mm) .. 7
 Mechanical Mounting Dimensions for Imager (Unit: mm) ... 7
 Mechanical Mounting Dimensions for Decoder Board (Unit: mm) ... 8

Chapter 3 Electrical ... 11
 Power Supply .. 11
 Ripple Noise ... 11
 DC Characteristics ... 11
 Operating Voltage (T=23°C) .. 11
 I/O Requirements ... 11

Chapter 4 Interfaces .. 12
 Interface Definition .. 12
 TTL-232 .. 12
 USB .. 13
 Micro USB .. 13
 Connector .. 14
12 PIN-FPC ... 14
Micro USB .. 14
External Circuit ... 15
LED Circuit for Good Read ... 15
Circuit for Beeper ... 16
Circuit for Sleep Mode LED ... 16
Circuit for Activating the Engine ... 17
Circuit for Trigger ... 17

Chapter 5 Development Tools .. 18

EVK .. 18
QuickSet / uExpress .. 18
Chapter 1 Introduction

About the EM2037

NLS-EM2037 (hereinafter referred to as “the EM2037”) is an embedded 2D Barcode Scan Engine with CMOS technology and Newland’s UIMG®. It can read barcodes on various carriers like paper and magnetic cards and is suitable to be integrated into various OEM devices including handheld scanners, PDA, kiosks, etc.

The image acquisition interface, initial data interface as well as I/O interface are available for users, which enables users to easily realize second development via Newland’s SDK.

Documentation Set

Documents related to the EM2037 include:

NLS-EM2037 series Embedded 2D Barcode Scan Engine Integration Manual: Describe how to integrate the EM2037.

NLS-EM2037 series Embedded 2D Barcode Scan Engine User Guide: Explain how to use and program the EM2037.

Sample Barcodes: Sample barcodes for test.

Aimer

The EM2037 provides a view finder that projects an aiming beam to help the user center the target barcode and improve efficiency. The aimer can be programmed on and off, but it is suggested to be turned on during scanning.

Illumination

The EM2037 has two red LEDs for supplementary illumination so as to enable the engine to scan barcodes even in complete darkness. The illumination can be programmed on and off.

Since the illumination is red light and the lens imaging system is coated by AR film which has obvious anti-reflection effect against red light, the engine shows better reading performance on non-red barcodes. For applications with red barcodes, it is suggested to adopt supplementary illumination lights of other colors.
Chapter 2 Installation

General Requirements

ESD Precautions

ESD has been taken into consideration during the design of the EM2037 and the engine is shipped in ESD safe packaging. Use care when handling the engine outside its package. Be sure grounding wrist straps and properly grounded work areas are used.

Dust and Dirt

The EM2037 must be sufficiently enclosed to prevent dust particles from gathering on the imager and lens. Dust and other external contaminants will eventually degrade the engine’s performance.

Environment

Good operation of the EM2037 requires environment to meet below standards:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Working Temperature</td>
<td>-20°C to 55°C</td>
</tr>
<tr>
<td>Storage Temperature</td>
<td>-40°C to 80°C</td>
</tr>
<tr>
<td>Humidity</td>
<td>5% ~95% (non-condensing)</td>
</tr>
</tbody>
</table>

Thermal Consideration

Care must be taken when designing the engine into any system. High-power components (like CPU, CIS, LEDs and PMIC) on the EM2037 may cause internal heating in high duty cycle scanning applications. Operating the EM2037 in continuous mode for an extended period may result in an increase in temperature by 30°C inside the engine. When the ambient temperature is high, the image noise level may be increased and the image quality may be degraded.

Methods below are suggested so as to reduce power consumption and heating:

- Avoid long term use of LEDs in continuous mode
- Reserve space for air convection during design.
- Avoid wrapping the EM2037 with heat insulation materials like rubber.
Installation Orientation

Figure 2-1 illustrates the proper position and front view for installation of the EM2037.

Optics

Window Placement

The window functions as an isolation wall in front of the EM2037 to separate the engine from other parts of the entire device. Meanwhile the window placement should ensure that the illumination and aiming beams can come out and no reflection into the engine, otherwise the reading performance might be affected.

The window should be mounted close to the front of the engine (parallel, no tilt). The maximum distance is measured from the front of the engine housing to the farthest surface of the window. Avoid reflection of illumination beams back to the engine and adopt thin material for window so as to reach better reading performance. As shown below, the maximum distance should be no more than 3mm and the distance from the front of the engine housing to the nearest surface of the window should be no more than 2mm.

If the window is required to be placed tilt, the distance should meet the same requirements as placed parallel and the tilt angle should ensure no reflection back into the lens.
Window Material and Color

The wave-length of illumination and aiming beams should be taken into consideration when choosing window material and color, so as to realize the possible highest transmission rate. The window should be clear and has even refraction. It is suggested to use PMMA or optical glass with transmission rate over 90% and vagueness rate less than 1%. Whether coated or not depends on materials and application demands.

Abrasion-resistant and Coating

Scratch on window will severely reduce the reading performance. It is suggested to use high-abrasion window material or use abrasion-resistant coating to prevent scratch and abrasion.

Window Size

The primary requirement for window design is to ensure the window will not obstruct the field of view. Based on that, the less obstruction on illumination envelope the better. Window size diagrams are shown below for design reference.
Window Size Diagram

Figure 2-3 Crosswise Section

Figure 2-4 Longitudinal Section
Optical Diagram of 37.5° Lens

Figure 2-5 Crosswise Section

Figure 2-6 Longitudinal Section
Optical Diagram of 42° Lens

Figure 2-7 Crosswise Section

Figure 2-8 Longitudinal Section

Ambient Light
The EM2037 might show better performance with ambient light. For high-frequency impulse light, however, the reading might be interfered.

Eye Safety
The EM2037 adopts LEDs instead of laser for aiming and illumination. Such LEDs are safe to eyes in normal circumstances. However, direct look in the eye of such LEDs should be avoided during use.
Mounting

The structure of the EM2037 supports two mounting methods, i.e. two-in-one type and split type. For the two-in-one type, the decoder board and the imager are originally assembled as a whole on an L shape bracket and thus the user can just mount the whole bracket on the target device. The two-in-one type is easy for integration and is suitable for devices with enough space inside. For the split type, the decoder board and the imager are separately mounted and are connected with an FFC cable. The split type is more flexible for integration and suits devices with smaller space inside.

When integrating the engine, the mechanical specifications below should be taken into consideration. The structure should be designed with enough space so that the engine will not be oppressed by other components. And sufficient space should be reserved to accommodate the FFC cable.
Mechanical Mounting Dimensions for Two-in-one Type (Unit: mm)

Front View

![Front View Diagram](image)

Bottom View

![Bottom View Diagram](image)

Top View

![Top View Diagram](image)
Mechanical Mounting Dimensions for Imager (Unit: mm)

Front View

![Front View Diagram]

Figure 2-12

Bottom View

![Bottom View Diagram]

Figure 2-13

Top View

![Top View Diagram]

Figure 2-14

Right View
Mechanical Mounting Dimensions for Decoder Board (Unit: mm)

Front View

Back View

Figure 2-15

Figure 2-16
Right View

Figure 2-17

1.00 ± 0.1

6.85 ± 0.3

Figure 2-18
Chapter 3 Electrical

Power Supply

Do not input power until the engine is connected properly, otherwise the components inside the engine might be damaged. Be sure the power is cut off before connecting or disconnecting the FFC cable.

Unstable power supply or sharp voltage drop might make the engine under unstable state. Wait at least for 2s before supplying power again.

Ripple Noise

The ripple noise of power supply should be within 50mV (peak-to-peak), and 50mV is the limit.

DC Characteristics

Operating Voltage (T=23°C)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Symbol</th>
<th>Minimum</th>
<th>Typical</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Voltage</td>
<td>VIN (TTL232)</td>
<td>3.3</td>
<td>5.0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td>VIN (USB)</td>
<td>4.5</td>
<td>5.0</td>
<td>5.5</td>
<td>V</td>
</tr>
<tr>
<td>Operating Current (5.0V)</td>
<td>Operating Current</td>
<td>-</td>
<td>330</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Idle Current</td>
<td>-</td>
<td>60</td>
<td>-</td>
<td>mA</td>
</tr>
<tr>
<td></td>
<td>Low Power</td>
<td>-</td>
<td>1.2</td>
<td>-</td>
<td>mA</td>
</tr>
</tbody>
</table>

I/O Requirements

VDD=3.3V, VSS=0V, T=23°C

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Minimum</th>
<th>Maximum</th>
<th>Unit</th>
</tr>
</thead>
<tbody>
<tr>
<td>VIL</td>
<td>VSS-0.1</td>
<td>VDD*0.2</td>
<td>V</td>
</tr>
<tr>
<td>VIH</td>
<td>VDD*0.8</td>
<td>VDD+0.1</td>
<td>V</td>
</tr>
<tr>
<td>VOL</td>
<td>VSS</td>
<td>VSS+0.3</td>
<td>V</td>
</tr>
<tr>
<td>VOH</td>
<td>VDD-0.3</td>
<td>VDD</td>
<td>V</td>
</tr>
</tbody>
</table>
Interface Definition

The interface of the EM2037 consists of 12 PIN-FPC and Micro USB:

✧ 12 PIN-FPC can either be TTL232 or USB form.
✧ Micro USB can only be used as standard USB interface.

The location of 12 PIN-FPC connector and Micro USB connector are marked in below illustration.

For detailed signal definition of 12 PIN-FPC, please refer to the following sections about TTL232 and USB interfaces.

Figure 4-1
TTL-232

When 12 PIN-FPC is set for TTL232 interface, the definitions for 12 PINs are as below:

<table>
<thead>
<tr>
<th>PIN#</th>
<th>Signal</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reserved</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>2</td>
<td>VIN</td>
<td>-</td>
<td>Power-supply voltage input</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>-</td>
<td>Power-supply and signal ground</td>
</tr>
<tr>
<td>4</td>
<td>RXD</td>
<td>I</td>
<td>Input-TTL level 232 receive data</td>
</tr>
<tr>
<td>5</td>
<td>TXD</td>
<td>O</td>
<td>Output-TTL level 232 transmit data</td>
</tr>
<tr>
<td>6</td>
<td>nCTS</td>
<td>I</td>
<td>Input-TTL level 232 clear to send signal</td>
</tr>
<tr>
<td>7</td>
<td>nRTS</td>
<td>O</td>
<td>Output-TTL level 232 request to send signal</td>
</tr>
<tr>
<td>8</td>
<td>PWRDWN</td>
<td>O</td>
<td>Output-Open Drain; 10K Pull up; active high indicator that the EM2037 is in power down mode.</td>
</tr>
<tr>
<td>9</td>
<td>nBEEPER</td>
<td>O,od</td>
<td>Output – Open Drain; idle high signal that can be an active low DC or PWM controlled AC signal used to drive an external beeper.</td>
</tr>
<tr>
<td>10</td>
<td>nGoodRead</td>
<td>O,od</td>
<td>Output – Open Drain; active low signal for driving a low current Good Read LED circuit.</td>
</tr>
<tr>
<td>11</td>
<td>nWAKE</td>
<td>I</td>
<td>Input, 100K Pull up – When in power down mode active low wake up signal to the EM2037.</td>
</tr>
<tr>
<td>12</td>
<td>nTRIG</td>
<td>I</td>
<td>Input, Weak Pull up – signal can be used a trigger input to the EM2037 to indicate trigger depressed and when programmed for host notify mode.</td>
</tr>
</tbody>
</table>

I = Input; O = Output; od = Open Drain
USB

When 12 PIN-FPC is set for USB interface, the definitions for 12 PINs are as below:

<table>
<thead>
<tr>
<th>PIN#</th>
<th>Signal</th>
<th>I/O</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Reserved</td>
<td>-</td>
<td>Reserved</td>
</tr>
<tr>
<td>2</td>
<td>VIN</td>
<td>-</td>
<td>Power-Supply voltage input</td>
</tr>
<tr>
<td>3</td>
<td>GND</td>
<td>-</td>
<td>Power-Supply and signal ground</td>
</tr>
<tr>
<td>4</td>
<td>D-</td>
<td>I/O</td>
<td>USB D-signal</td>
</tr>
<tr>
<td>5</td>
<td>Reserved</td>
<td>O</td>
<td>Reserved</td>
</tr>
<tr>
<td>6</td>
<td>D+</td>
<td>I/O</td>
<td>USB D+signal</td>
</tr>
<tr>
<td>7</td>
<td>Reserved</td>
<td>O</td>
<td>Reserved</td>
</tr>
<tr>
<td>8</td>
<td>PWRDWN</td>
<td>O</td>
<td>Output-Open Drain; 10K Pull up; active high indicator that the EM2037 is in power down mode.</td>
</tr>
<tr>
<td>9</td>
<td>nBEEPER</td>
<td>O,od</td>
<td>Output – Open Drain; idle high signal that can be an active low DC or PWM controlled AC signal used to drive an external beeper.</td>
</tr>
<tr>
<td>10</td>
<td>nGoodRead</td>
<td>O,od</td>
<td>Output – Open Drain; active low signal for driving a low current Good Read LED circuit.</td>
</tr>
<tr>
<td>11</td>
<td>nWAKE</td>
<td>I</td>
<td>Input, 100K Pull up – When in power down mode active low wake up signal to the EM2037.</td>
</tr>
<tr>
<td>12</td>
<td>nTRIG</td>
<td>I</td>
<td>Input, Weak Pull up – signal can be used a trigger input to the EM2037 to indicate trigger depressed and when programmed for host notify mode.</td>
</tr>
</tbody>
</table>

I = Input; O = Output; od = Open Drain.
Micro USB

The signal definitions of USB interface on Micro USB connector conform to the standard definitions.

Connector

There are 12 PIN-FPC connector and Mirco USB connector on the EM2037.

12-PIN FPC

12-PIN FPC connector is a CviLux Corporation FFC/FPC connector(Model No.:CF20121V0R0-LF).

![Diagram of connector](image)

Figure 4-2
Micro USB

Micro USB connector is a connector with standard definitions and can be used as standard methods.

![Diagram of Micro USB connector](image)

Figure 4-3
External Circuit

LED Circuit for Good Read

The illustration below shows the circuit of LED reminder for good read. The left part of Figure 4-5 is the driver circuit on the EM2037 decoder board. The right part of Figure 4-5 is provided for design reference. nGoodRead signal comes from PIN10 of 12-PIN FPC.

![Diagram of LED Circuit](image)

Figure 4-5

Circuit for Beeper

The illustration below shows the circuit of Beeper. The left part of Figure 4-6 is the driver circuit on the EM2037 decoder board. The right part of Figure 4-6 is provided for design reference. nBEEPER signal comes from PIN9 of 12 PIN-FPC.

![Diagram of Beeper Circuit](image)

Figure 4-6
Circuit for Sleep Mode LED

The illustration below shows the circuit of External LED for indicating sleep mode. The left part of Figure 4-7 is the driver circuit on the EM2037 decoder board. The right part of Figure 4-7 is provided for design reference. PWRDWN signal comes from PIN8 of 12 PIN-FPC.

The host terminal can adjust the external circuit and its functions as per actual needs, but the external circuit should match the circuit of the decorder board.

Circuit for Activating the Engine

The illustration below shows the circuit of activating the EM2037 from sleep mode. The right part of Figure 4-8 is the receiving circuit on the EM2037 decoder board. The left part of Figure 4-8 is provided for design reference. The nWAKE signal comes from PIN11 of 12 PIN-FPC.

The host terminal can adjust the external circuit and its functions as per actual needs, but the external circuit should match the circuit of the decoder board.
Circuit for Trigger

The illustration below shows the circuit which provides the EM2037 with the trigger signal and thus enables a read. The right part of Figure 4-9 is the receiving circuit on the EM2037 decoder board. The left part of Figure 4-9 is provided for design reference. The nTRIG signal comes from PIN12 of 12 PIN-FPC.

The host terminal can adjust the external circuit and its functions as per actual needs, but the external circuit should match the circuit of the decoder board.

![Suggested External Driver Circuit and Receiving Circuit inside Mainboard](Figure 4-9)
Chapter 5 Development Tools

The EM2037 has both hardware and software developer kits for second development, which provides convenience and ease for quick development and function settings.

EVK

Newland provides EVK for test and evaluation on the EM2037. This EVK includes beeper and beeper`s driver circuit, LED and LED`s driver circuit, trigger, reset key, RS232 interface, USB interface and so forth. The engine can be mounted on EVK via 12-PIN FFC cable type 1 (contacts on the same side). This EVK provides both USB and RS232 interfaces.

QuickSet / uExpress

Newland provides software developer kits like QuickSet and uExpress for software development and function settings on the EM2037 under Windows System.
Headquarters
Fujian Newland Auto-ID Tech. Co., Ltd.
3F, Building A, No.1, Ruijiang West Rd., Mawei, Fuzhou,
Fujian, China 350015
TEL: +86 - (0) 591-83979222
FAX: +86 - (0) 591-83979208
E-mail: marketing@nlscan.com
WEB: www.nlscan.com

Newland Europe BV
Rolweg 25, 4104 AV Culemborg, The Netherlands
TEL: +31 (0) 345 87 00 33
FAX: +31 (0) 345 87 00 39
Email: info@newland-id.com
WEB: www.newland-id.com
Tech Support: tech-support@newland-id.com

Newland North America Inc.
Address: 46559 Fremont Blvd., Fremont, CA 94538, USA
TEL: 510 490 3888
Fax: 510 490 3887
Email: info@newlandna.com
WEB: www.newlandna.com

Newland Taiwan Inc.
7F-6, No. 268, Liancheng Rd., Jhonghe Dist. 235, New
Taipei City, Taiwan
TEL: +886 2 7731 5388
FAX: +886 2 7731 5389
Email: info@newland-id.com.tw
WEB: www.newland-id.com.tw